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Abstract The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes
are examined by use of long-term retrieval products at the Tropical West Pacific, Southern Great Plains, and
North Slope of Alaska sites of the Department of Energy’s Atmospheric Radiation Measurement program.
Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull
distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water
content. The probability density functions are then used to upscale relevant physical processes to obtain
grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean
bias in autoconversion rate, whereas the mean bias for the lognormal representation is about 10%. The
Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the
mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations
perform better than the Gamma andWeibull representations. The results show that the optimal choice of subgrid
cloud distribution function depends on the nonlinearity of the process of interest, and thus, there is no single
distribution function that works best for all parameterizations. Examination of the scale (window size) dependence
of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing
window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.

1. Introduction

The Jensen’s inequality suggests that a convex transformation of a mean is less than or equal to the mean
after the convex transformation, whereas the opposite is also true for concave transformations [Jensen, 1906].
The important implication of Jensen’s inequality for climate modeling is that the grid-average process rate
may depend on both the grid-average properties and the subgrid variability of the relevant variables
within the grid. For example, it has been shown that directly using grid-average cloud properties to
compute grid mean microphysical process rates or radiative fluxes without taking account for the
subgrid-scale variation of clouds can lead to significantly biases in the calculated process rates [Pincus
and Klein, 2000]. According to Jensen’s inequality, the sign of the bias in the grid-average quantities
due to neglecting subgrid variability depends on whether the function representing the process is
convex or concave [Larson et al., 2001].

To mitigate the biases due to unresolved subgrid variability or improve representation of subgrid variability is
a main objective of parameterizations of cloud-related fast processes in climate models. Although the
importance of subgrid variability has been recognized in climate models, traditionally subgrid variability has
not been explicitly treated in each parameterization scheme, and thus, there is a danger that different
parameterizations may assume different subgrid variability for the same quantity. Recently, there have been
some efforts to introduce explicit subgrid cloud variability into model parameterizations to improve both the
physical basis of relevant parameterizations as well as their consistency. One widely used approach is to
assume a functional form of the subgrid probability density function (PDF) and determine several low-order
statistical moments of the distribution function based on resolved-scale information [Golaz et al., 2002;
Tompkins, 2002]. Univariate Gamma distribution functions were proposed by Morrison and Gettelman [2008]
and implemented in the Community Atmosphere Model and Geophysical Fluid Dynamics Laboratory
Atmospheric Model(AM3)-CLUBB to improve the consistency between cloud microphysical
parameterizations [Guo et al., 2014]. Others also proposed to use a multivariate lognormal distribution to
describe spatial subgrid variation of clouds [Golaz et al., 2002; Larson and Griffin, 2012].
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Part I of this paper examines the statistical characteristics of cloud Liquid Water Path (LWP) variability and its
scale dependence using long-term ground-based observations [Huang et al., 2014]. It is revealed that the
lognormal and Gamma distributions are able to reasonably describe the observed relationship between
statistical moments of cloud LWP. However, the bias caused by misrepresentation of subgrid variability
(hereafter subgrid bias) is dependent on both the characteristics of subgrid cloud variability and the
nonlinearity of the underlying processes. Some processes may be more sensitive to the right tail of the
subgrid cloud distribution, whereas others are more sensitive to the left tail of the distribution. It is thus
necessary to understand both the behavior of subgrid bias and the specific process before a PDF
representation of subgrid cloud variability can be used in models. Boutle et al. [2013] demonstrated with high
resolution in situ and satellite data that subgrid-scale variability of clouds can lead to large biases, up to a
factor of 4, in a typical microphysical parameterization. Using collocated satellite observations, Lebsock et al.
[2013] shows that global models that do not take subgrid-scale cloud-precipitation covariance into account
significantly underestimate grid mean microphysical process rates in warm clouds. Such kind of studies,
however, is rare possibly due to limited availability of global long-term observations of cloud microphysical
properties. The paper uses long-term cloud radar observations collected by the Department of Energy (DOE)
Atmospheric Radiation Measurement (ARM) program to empirically characterize the statistical properties of
subgrid biases in grid-average microphysical and radiative process rates.

The remainder of this paper is organized as follows. Section 2 provides a general description of the data and
methods used in this study. Section 3 examines the characteristics of the observed statistical moments of
cloud LWC. Sections 4 and 5 characterize the systematic biases in grid-average microphysical rate and
radiative flux calculations for various representation of cloud subgrid variability. Section 6 examines the scale
dependence of the systematic biases arising from various cloud subgrid variability representations. Section 7
provides discussions on the implications of the results on development of cloud parameterizations. Section 8
summarizes the findings of this study.

2. Data and Methods

The MICROBASE value-added products from the U.S. Department of Energy (DOE) Atmospheric Radiation
Measurement (ARM) program [Stokes and Schwartz, 1994] are used to infer cloud subgrid variability. To cover
a variety of climatologically regimes, we use the data collected at the three permanent ARM sites from
2002 to 2010: Tropical Western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA)
sites, which respectively represent tropical, midlatitude, and arctic climates. The MICROBASE product
provides a continuous baseline microphysical retrieval including vertical profiles of the liquid water content
(LWC)/ice water content and liquid/ice cloud droplet effective radius for all cloud conditions with 10 s time
interval and 45 m vertical resolution. The MICROBASE products are based on the measurements by a suite
of passive and active instruments. A best estimate radar reflectivity from the Active Remote Sensing of
Clouds value-added product (VAP) [Clothiaux et al., 2000], the LWP from the ARM Microwave Retrieval VAP
[Turner et al., 2007], and atmosphere thermodynamic profiles from the ARM Merged Sounding value-added
product [Troyan, 2010] is used as ancillary data for the MICROBASE algorithm. The specific transformations
from radar/radiometer observations to cloud microphysical properties were chosen through a series of
shortwave/longwave radiative closure studies [Mlawer et al., 2008].

Previous studies reported that there are large uncertainties associated with the retrieved vertical distributions
of cloud microphysical properties due to limited information content in radar measurements and scarcity
of aircraft cloud observations for retrieval validation [Huang et al., 2012; Zhao et al., 2012]. Range-resolved
cloud microphysical properties such as cloud LWC and cloud droplet effective radius are at best poorly
constrained when precipitation particles coexist with cloud droplets. One should be cautious when using
the range-resolved retrievals of cloud LWC to examine cloud variability. On the other hand, the retrievals
of path-integrated quantities such as cloud LWP from passive measurements are considered to be more
reliable because the forward modeling of the observation process involves fewer assumptions [Cadeddu
et al., 2013]. Since the MICROBASE retrievals are constrained by the independently retrieved LWP, the
column-average cloud LWC should be more reliable than the range-resolved LWC. The cloud droplet
number concentration is more poorly constrained by radar and radiometer observations [Huang et al.,
2012]. Thus, the column-average cloud LWC is used here to study cloud horizontal variability.
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The time series of point measurements contain information about both the spatial and temporal variations of
clouds. To infer cloud spatial variability from vertically pointing observations, we have to rely on the Taylor’s
hypothesis [Taylor, 1938; Sun and Thorne, 1995]. Specifically, the time series data are divided into segments
(or windows) of window size Δt. The discrete PDF of retrieved cloud LWC in each window can be derived
numerically using the technique described in the companion paper [Huang et al., 2014]. The observed PDF of
liquid water content (LWC) is then approximated by four commonly used distribution functions: truncated
Gaussian, Gamma, lognormal, andWeibull distributions. The parameters of the four distribution functions are
obtained by use of the moment-based approach [Barker et al., 1996] that assumes the derived distribution
takes exactly the same mean (q) and standard deviation (σ) as the observed distribution of cloud LWC. Other
approaches such as the maximum likelihood estimation (MLE) can also be used to specify the distribution
parameters in principle. However, the MLE approach requires the average logarithm in addition to the mean
[Barker et al., 1996]. Further assumptions about the average logarithm are needed in order to implement
the MLE approach in general circulation model (GCM) subgrid cloud parameterizations.

Systematic biases can arise in the calculations of grid-average microphysical process rates or radiative fluxes if the
cloud subgrid variability is inadequately represented. For example, the Independent Column Approximation (ICA)
is widely used in GCMs for calculations of grid-average microphysical rate and radiative flux [Oreopoulos
and Barker, 1999; Pincus et al., 2003]. This approach assumes that the net effects of the interaction between
subcolumns are negligible, and thus, the subcolumns can be treated independently. With the ICA, the
grid-average microphysical rates or radiative fluxes are solely depended on the PDFs or joint PDFs of the
relevant subgrid parameters. The grid-average microphysical rates or radiative fluxes therefore can be
obtained by integrating the relevant processes over the corresponding PDF.

Two different approaches can be used to explicitly account for subgrid variability if the validity of ICA is
assumed: the analytical integration approach and the Monte Carlo approach. The first approach (analytical
integration) is to analytically integrate the subgrid process over the subgrid cloud distribution function.
The analytical approach is attractive because the addition of computational cost is minimal, but it is only
possible when the expressions representing the processes of interest and subgrid distribution functions
are sufficiently simple [Griffin and Larson, 2013; Larson and Griffin, 2012]. In some cases, a simple analytical
form of the integral cannot be obtained but the estimation of the integral can be accelerated by selecting
appropriate quadratures. The Monte Carlo approach is based on statistical realizations of cloud field
(subcolumns) generated using a statistical cloud generator under the guidance of the subgrid distribution
function [Raisanen et al., 2004; Pincus et al., 2003]. The subgrid processes then act on these subcolumns within
which the variability can be neglected. The Monte Carlo approach could be the only option for some
processes that can only be described as a numerical routine. Here we use autoconversion, accretion
(analytical integration approach), and radiative transfer (Monte Carlo approach) as examples to illustrate the
effects of cloud subgrid variability on the grid-average process rates and to evaluate the performance of
various representations of cloud subgrid variability.

3. Variability of Retrieved Cloud LWC

Cloud processes are likely to be themost sensitive to scale dependence issues because of high nonlinearity of
these processes and variability across a wide range of scales. Thus, this section examines the variation of
several statistical moments of column-average cloud LWC, i.e., mean, standard deviation, and skewness as a
function of grid box size as measured by the averaging window size.

The observed PDFs of 3 h mean LWC at the TWP, SGP, and NSA sites for the period of 2002 to 2010 are shown
in Figure 1a. The averaging time windows with less than five cloudy columns are excluded from the analysis
since the statistical moments cannot be reliably estimated. The probability density of LWC decreases quickly
with increasing LWC. Despite the noticeable differences in the PDFs of LWP at the three sites shown in
Figure 3 of Part I, the PDFs of column-average LWC, in general, are quite similar; this can be explained by
thinner liquid cloud layers at the arctic site. The LWC at the TWP site has a slightly more significant right tail
than the other two sites. Figure 1b shows the PDFs of the standard deviation of cloud LWC calculated in 3 h
windows. The mean standard deviations are respectively 0.14, 0.10, and 0.07 g m�3 at the TWP, SGP, and
NSA sites. The PDFs in all three sites peak at small standard deviation values and decrease rapidly with
increasing standard deviation. The TWP site has a more significant right tail than other sites, whereas the
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tail of standard deviation at the NSA site is smallest. The PDFs of relative dispersion are shown in Figure 1c.
The mean relative dispersions at the TWP, SGP, and NSA sites are respectively 0.96, 0.83, and 0.55,
suggesting that the tropical and arctic sites have the largest and smallest cloud variability, respectively.
Similar to the relative dispersion, the NSA site also has the smallest skewness among the three sites
(Figure 1d). The mean skewness values are respectively 2.4, 2.3, and 1.6 for the TWP, SGP, and NSA sites;
these values are consistent with those of LWP reported in Part I.

Figure 2a shows that the mean time-average LWC as a function of averaging window size for the TWP,
SGP, and NSA sites. Among the three sites, the mean LWC at the TWP site is highest and the SGP site has
lowest mean LWC. The envelope of one standard deviation narrows slightly as the window size increases.
For all the three sites, the mean standard deviation is small when the window size is small (<10min) and
it rises sharply with increasing window size (Figures 2b). When the window increases to larger than 12 h,
the mean standard deviation increases slowly with window size. Among the three sites, the mean standard
deviation at the TWP site is largest and that at the NSA site is smallest. Similar behaviors have been found
for LWP in Part I [Huang et al., 2014].

Figure 2c reveals that the mean relative dispersion rises from a close to zero value (<0.1) to about 1.2 at
the TWP site, 1.1 at the SGP site, and 0.8 at the NSA site when the window size increases from a few
minutes to 2 days. It is evident that the mean relative dispersion keeps increasing with increasing
window size, but the slope of curve becomes less steep for larger window sizes. The mean skewness of
LWC is close to zero when the window size is small (Figure 2d) and increases rapidly with increasing
window size. The NSA site has smaller skewness across all examined window sizes than the other two
sizes. The distributions of cloud LWC at the TWP and SGP sites are highly positively skewed for large
window sizes but only moderately skewed at the NSA site.

Figure 3a shows the observed and approximated PDFs of column-average cloud LWC for 3 h time window at
the TWP sites from 2002 to 2010. Figure 3b is the zoom-in of the small window in Figure 3a to better illustrate
the details at the low LWC region. The observed distribution of LWC is positively skewed with the most
probable LWC being smaller than 0.01 g m�3. The frequency of occurrence of cloud LWC decreases quickly

(a) (b)

(c) (d)

Figure 1. Observed PDFs of the statistical moments of cloud LWC calculated in 3 h windows. (a) Mean LWC. (b)
Standard deviation. (c) Relative dispersion. (d) Skewness. The ARM MICROBASE products at the TWP, SGP, and NSA
sites from 2002 to 2010 are used.
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with increasing LWC. The four distribution functions (truncated Gaussian, Gamma, lognormal, and Weibull
distribution functions) are obtained with the moment approach described in section 2. It can be seen that all
the distribution functions except the truncated Gaussian reasonably reproduce the observed PDF. The
probability density of the truncated Gaussian distribution drops much faster than the observed PDF, and
thus, it largely underestimates the tail. The Gamma and Weibull distribution functions appear to be almost
identical at low LWC regions, and the Weibull distribution has higher probabilities at the tail than the
Gamma distribution. The lognormal distribution underestimates the probability at low LWC regions but
does a good job in the rest of the PDF. Among the four distribution functions, the lognormal distribution
has the heaviest tail.

It is interesting to note that these LWC features are similar to those of liquid water path presented in Part I.
Figures 3c and 3d show the observed and approximated PDFs at the SGP and TWP sites. It can be seen that
the lognormal distribution also seems to have the heaviest right tail.

4. Effects of Cloud Subgrid Variability on Grid-Average Microphysical Process Rate

In reality, most cloud-related processes depend on multiple cloud properties, and therefore, the joint
PDF of all relevant variables is required to calculate the process rate [Larson and Griffin, 2012]. For
example, the autoconversion process depends on cloud LWC, droplet number concentration, and
relative dispersion of the cloud droplet size distribution [Khairoutdinov and Kogan, 2000; Liu and Daum,
2004]. However, it is well known that cloud droplet number concentration and relative dispersion are
poorly constrained by radar and radiometer observations [Huang et al., 2012]. Since the purpose of this
study is to demonstrate the effects of cloud subgrid variability rather than develop microphysical
parameterizations, we neglect the variations in droplet number concentration and relative dispersion.
More complicated cases that require joint PDF of several variables can be examined in a similar
manner [Larson and Griffin, 2012].

(a) (b)

(c) (d)

Figure 2. Scale dependence of the statistical moments of column-average cloud LWC. The shaded area indicates the envelope
of one standard deviation at the TWP site. (a) Mean time-average LWC. (b) Mean standard deviation. (c) Mean relative dispersion.
(d) Mean skewness. The ARM MICROBASE products at the TWP, SGP, and NSA sites from 2002 to 2010 are used.
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To account for cloud subgrid variability in the calculations of microphysical process rates, a common
approach is to assume that the microphysical process rate can be approximated with a simple analytical form
[Larson and Griffin, 2012]:

M ¼ aqb (1)

where a is constant depended on the specific microphysical process and the choice of a has no effects on the
calculated relative bias of microphysical rates; b parameterizes the nonlinear dependence of the process on
cloud condensate. We choose the autoconversion and accretion process as examples to illustrate the effects
of subgrid cloud variability since these two processes represent a large range of nonlinearity. The accretion
rate is almost a linear function of cloud LWC with the exponent b being around 1.15. For autoconversion
process, the exponent b ranges from 2 to 3 [Khairoutdinov and Kogan, 2000; Liu and Daum, 2004;Morrison and
Gettelman, 2008; Larson and Griffin, 2012]. Furthermore, the autoconversion process exhibits a threshold
behavior [Kessler, 1969; Del Genio et al., 1996; Liu et al., 2006]. The threshold behavior of autoconversion
process can be considered by adding another term to the right-hand size of equation (1):

M ¼ aqb 1� e� q=qcð Þc
� �

(2)

where qc is the critical liquid water content and the exponent c controls the steepness of the threshold
behavior. For demonstration purpose, we assume that qc= 0.84 g/m3, roughly corresponding to a number
concentration of 200/cm�3 and a critical radius of 10μm. Sundqvist [1978] proposed to use a value of 2 for c
andDel Genio et al. [1996] used 4. The theoretical analysis of Liu et al. [2006] revealed that the exponent c is related
to the relative dispersion of the cloud droplet size distribution, with a higher c corresponding to a narrower size
distribution. It can be seen that the threshold function greatly reduces the autoconversion rate for regionswith low
cloud LWC but has much smaller effects for high LWC regions. The relative large exponent b together with the
threshold function is responsible for the high sensitivity of autoconversion to high cloud LWC values in model
parameterizations. For illustration purpose, we set b=2.47 and c=2 in this study.

We evaluate the microphysical consequences using the aforementioned four different PDFs of cloud subgrid
variability. Equation (1) or (2) is applied to the retrieved cloud LWC at 10 s intervals within each time window,

(a) TWP (b) SGP

(c) NSA

Figure 3. Comparisons of observed and parameterized PDFs of cloud LWC at the (a) TWP, (b) SGP, and (c) NSA sites for the
period of 2002 to 2010.
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and the reference mean microphysical rate for each window is obtained by averaging the 10 s microphysical
rates. The baseline calculation just neglects cloud subgrid variability completely; i.e., only the grid-average
cloud LWC is used in equations (1) and (2) to calculate the grid-average autoconversion and accretion rates.
This assumption is used in the radiative transfer calculations by many modern climate models [Pincus et al., 2003].
To evaluate the performance of each cloud subgrid variability representation, the observed LWCdistribution is first
approximated using the aforementioned four representations. Equation (1) or (2) is then integrated analytically
over the parameterized distribution to obtain the grid-average process rate. The difference between the reference
and the parameterized microphysical rates is used as a measure of the accuracy of each representation. We use
two metrics to evaluate the performance of each representation of cloud subgrid variability: (1) the relative bias,
calculated as the ratio of the difference between approximated and reference values to the reference value, and (2)
the magnitude of relative bias, defined as the absolute of the relative bias. The mean magnitude of relative bias
equates themean relative bias when all the relative bias values are nonnegative. Themean relative bias provides a
measure of the accuracy of the approximation, i.e., how far the mean deviates from the truth, while the mean
magnitude depends on both accuracy and precision of the approximation.

Theoretically, ignoring cloud subgrid variability should always lead to underestimation of autoconversion
and accretion rates because both processes are convex functions of cloud LWC. This is clearly confirmed in
Figures 4 and 5. For autoconversion rate, the mean relative bias appears to be uniformly distributed between
0 and �100% at the TWP and SGP sites, while the distribution of relative bias at the NSA site peaks around
�5% (Figure 4). The mean relative underestimation is respectively 73%, 64%, and 49% at the TWP, SGP, and
NSA sites, and themeanmagnitudes of the relative biases are identical to the mean relative biases (Table 1). If
subgrid clouds are represented using the above mentioned distribution functions, the resultant distributions
of relative bias at the three sites are dramatically reduced at all three sites (Table 1). It is evident that the

(a) TWP (b) SGP

(c) NSA
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Figure 4. Distributions of the relative bias of autoconversion rate calculated using the four representations of cloud subgrid variability. (a) The TWP site. (b) The SGP
site. (c) The NSA site.
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Figure 5. Distributions of the relative bias of accretion rate calculated using the five representations of cloud subgrid
variability. (a) The TWP site. (b) The SGP site. (c) The NSA site.

Table 1. Comparison of Resultant Mean Relative Biases of Four Representations of Cloud Subgrid Variabilitya

Quantity
Subgrid Variability

Scheme

Site

TWP SGP NSA

Autoconversion rate No variability �73%(73%) �64%(64%) �49%(49%)
Truncated Gaussian �29%(34%) �25%(29%) �14%(19%)

Gamma �1.2%(9.5%) �3.8%(9.5%) �3.8%(7.3%)
Lognormal 11%(14%) 6.1%(13%) 2.5%(7.9%)
Weibull �2.1%(10%) �4.1%(11%) �4.7%(9.5%)

Accretion rate No variability �2.0%(2.0%) �1.5%(1.5%) �0.9%(0.9%)
Truncated Gaussian 0.1%(2.5%) 0.3%(2.3%) 0.1%(0.5%)

Gamma 0.5%(0.8%) 0.4%(0.7%) 0.3%(0.4%))
Lognormal �0.2%(0.3%) �0.1%(0.2%) �0.1%(0.1%)
Weibull 0.2%(1.2%) 0.2%(1.0%) 0.2%(0.3%)

Cloud albedo No variability 17.5%(17.5%) 10.3%(10.3%) 5.0%(5.0%)
Truncated Gaussian 4.0%(7.1%) 0.0%(3.8%) �1.0%(2.0%)

Gamma �7.7%(8.3%) �3.1%(3.6%) �0.6%(1.0%)
Lognormal 0.6%(4.5%) 0.8%(2.2%) 0.4%(0.8%)
Weibull �6.9%(7.9%) �3.1%(3.9%) �0.9%(1.6%)

Transmittance No variability �21.8%(21.8%) �16.9%(16.9%) �8.1%(8.1%)
Truncated Gaussian 0.3%(1.3%) 1.1%(2.1%) 0.4%(1.0%)

Gamma 7.5%(9.1%) 4.0%(5.5%) 0.8%(1.7%)
Lognormal �2.5%(6.0%) �2.3%(4.1%) �0.9%(1.5%)
Weibull 6.7%(8.4%) 4.6%(5.9%) 1.4%(2.3%)

aThe two numbers denote the mean relative bias over the entire period and the mean magnitude of the relative
bias, respectively.
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Gamma, lognormal, and Weibull distributions produce smaller bias in grid-average autoconversion rate than
the truncated Gaussian distribution at all three sites. The Gamma and Weibull distributions produce quite
similar negative biases at all the three sites. The lognormal distribution is the only one producing positive
mean biases, which can be interpreted as a combined effect of the heavier tail of the lognormal distribution
compared to the other three distributions and the high sensitivity of the autoconversion process to the
tail (equation (2) and Figure 3a). The mean magnitudes of relative bias from the four parameterizations
are only a fraction of those obtained without consideration of subgrid variability. The mean magnitudes of
relative bias from the Gamma, lognormal, and Weibull distributions are about 10%, about one third to one
half of the mean magnitude of relative bias from the truncated Gaussian distribution.

It can also be seen that the bias in the autoconversion rate is smallest at the Arctic site and is largest at the
tropical site regardless of which subgrid cloud representation is chosen. These results can be explained by the
corresponding cloud variability shown in Figure 2.

For the accretion process, the exponent in equation (1) takes the value of 1.15. It is not highly nonlinear with regard
to cloud LWC. It is thus expected that subgrid cloud variability has relatively small effects on grid-average accretion
rate. This is clearly confirmed by our calculations shown in Table 1 and Figure 5. If subgrid cloud variability is
completely ignored, there will be a negative bias of less than 2% in grid-average accretion rate. When subgrid
cloud variability is parameterized as any of the four representations, the mean bias will be reduced to within 0.5%.

5. Effects of Cloud Subgrid Variability on Mean Radiative Fluxes

To evaluate the radiative effects of cloud subgrid variability, we use the ICA assumption to simplify the
calculation of grid-average radiative fluxes. The ICA assumption prohibits horizontal photon transport
between columns; therefore, the arrangement of the subcolumns does not affect the calculated grid-average
radiative fluxes. Each subcolumn is assumed to contain plane-parallel clouds, i.e., no variability within each
subcloumn. It should be noted that, in the real world, interactions between subgrid clouds or subcolumns can
have significant effects on the grid-average radiative fluxes (three-dimensional effects) for some cloud cases
[Barker et al., 1999], which is not considered here. Cloud optical thickness τ is obtained using the following
widely used parameterization [Hu and Stamnes, 1993]:

τ ¼ 1:5LWP

re
(3)

It has been confirmed in field studies that there could also be considerable spatial variability of cloud droplet
size within clouds, but the information of cloud droplet size cannot be reliably retrieved from radar
observations [Huang et al., 2012]. We therefore assume a fixed value of 8μm for cloud droplet effective radius. The
Heney-Greenstein phase function is used, and the asymmetry factor is set to be 0.85 [Henyey and Greenstein, 1941].
The cloud droplet single scattering albedo is assumed to be 1. Solar zenith angle is 30°. An ideally black lower
boundary (surface) is assumed. No gas or aerosol is included in the calculations, and no cloud vertical variation is
considered. The reference and parameterized radiation fluxes are obtained in the same manner as describe in
section 4 except the integration is performed using the aforementioned Monte Carlo approach.

Figure 6 shows the distributions of relative bias of 3 h average cloud albedo at the three ARM sites using the
truncated Gaussian, Gamma, lognormal, andWeibull parameterizations. Unlike the autoconversion rate, neglect of
cloud subgrid variability always overestimates cloud albedo and the distribution of relative bias is positively
skewed. The mean relative biases of cloud albedo at the TWP, SGP, and TWP sites are respectively 17.5%, 10.3%,
and 5.0% (Table 1). These results are consistent with the fact that cloud albedo is a concave function of cloud
optical thickness or LWP. When subgrid cloud variability is introduced through the four parameterizations, the
mean relative biases of cloud albedo in all three sites are significantly reduced (Table 1). The peaks of the bias
distributions are around zero for all four parameterizations. The lognormal distribution seems to produce the
best results with the mean relative bias being less than 1%, followed by the truncated Gaussian distribution.
The Gamma distribution produces very similar results as the Weibull distribution. The good performance of the
truncated Gaussian distribution is a little bit surprising given the fact that it does not well represent either the
left or right tails of observed PDF. The lognormal distribution also produces the smallest mean magnitude of
relative bias (within 5%) among the four representations at all three sites. The mean magnitude of relative bias
from the other three distributions is slightly larger but is within 10%.
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The distribution of relative bias in 3 h average transmittance is shown in Figure 7. The mean relative biases of
transmittance if subgrid variability is ignored are�21.8%�16.9%, and�8.1% at the TWP, SGP, and NSA sites,
respectively. The truncated Gaussian distribution produces the best results with the mean relative biases
being 0.3%, 1.1%, and 0.4% at the three sites (Figure 5). The corresponding mean magnitudes at the three
sites are respectively 1.3%, 2.1%, and 1.0%. The mean relative biases from the lognormal distribution are
�2.8%,�2.3, and�0.9% at the three sites, slightly larger in magnitude than that from the truncated Gaussian
distribution. Again, the Gamma distribution produces almost identical results as the Weibull distribution.

6. Scale Dependence of the Subgrid Effects

The companion paper has demonstrated the strong dependence of LWP subgrid variability on the averaging
window size [Huang et al., 2014]. This section examines the scale dependence of the subgrid microphysical
and radiative effects. Section 4 indicates that the effect of subgrid variability on grid-average accretion rate is
negligible; therefore, we focus on only the autoconversion and radiative transfer processes in this section.
Furthermore, it is found that the results at the three sites are similar and only the TWP results are presented
in this section.

The scale dependence of mean relative bias of autoconversion rate is shown in Figure 8. The smallest and
largest averaging window sizes examined in this study are 10min and 24 h, respectively, corresponding to
spatial scales of 3 to 6 km and 432 to 864 km assuming a typical wind speed of 5 to 10m/s. There is a general
trend that the mean relative bias increases monotonically with the averaging window size. This result is
consistent with Figure 2 in this paper and Figure 2 in Part I, both of which show that the magnitude of
subgrid variability increases monotonically with the window size. When the subgrid variability is ignored,
the autoconversion rate is always negatively biased by a large amount. Even with a small averaging window,
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Figure 6. Distributions of the relative bias of cloud albedo calculated using five representations of cloud subgrid variability.
(a) The TWP site. (b) The SGP site. (c) The NSA site.
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e.g., a 10 min window, the resultant mean relative bias is around �20%. The slope of the curve is steep for
small window sizes and becomes almost flat when the grid box exceeds a half day, which is consistent with
the variation of standard deviation and relative dispersion with grid box size (Figure 2). When subgrid cloud

variability is introduced through the four
parameterizations, the magnitude of relative
bias is greatly reduced: the mean relative bias
from the truncated Gaussian, Gamma,
lognormal, and Weibull distributions are
respectively about 50%, 5%, 20%, and 5% of the
mean bias resulted from ignoring cloud subgrid
variability. The Gamma and Weibull
distributions are able to produce unbiased
estimation of grid-average autoconversion rate
across a wide range of scales from 10min to 1 day.
The mean relative bias from the truncated
Gaussian distribution is negative across all
examined scales, while the same metrics is
always positive for the lognormal distribution.
Figure 9 shows that the scale dependence of
the magnitude of relative bias is quite similar to
that of the mean relative bias, i.e., monotonic
increase with window size. The Gamma
distribution has the smallest magnitude of
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Figure 8. The dependence of mean relative bias in grid-average
autoconversion rate on averaging window size using the five
representations of subgrid cloud. The data from the TWP
site are used.

(a) TWP (b) SGP

(c) NSA

-0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

Relative bias of transmittance

F
re

q
u

en
cy

-0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

Relative bias of transmittance

F
re

q
u

en
cy

-0.2 -0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

Relative bias of transmittance

F
re

q
u

en
cy

Figure 7. Distributions of the relative bias of transmittance calculated using five representations of cloud subgrid variability.
(a) The TWP site. (b) The SGP site. (c) The NSA site.
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relative bias for window size shorter than 6 h
and performs almost identical to the Weibull
distribution for window size longer than 6 h.

The monotonic increase of mean relative bias
with window size is also found for grid-average
cloud albedo and transmittance (Figures 10 and 11).
It can be seen that neglecting subgrid
cloud variability always results in positive biases in
calculated grid-average cloud albedo and negative
biases in transmittance. For grid-average cloud
albedo, the lognormal distribution produces the
most unbiased results (the mean relative bias is
within 1% across all examined scales), followed by
the truncated Gaussian distribution, then the
Weibull and Gamma distributions. For grid-
average transmittance, both the lognormal and
truncated Gaussian distributions work very well
and the resultant mean relative biases are
within 3%. The Gamma and Weibull distributions

produce mean relative biases of more than 10% when the window size is longer than 12 h. The scale
dependence of mean magnitude of relative bias in cloud albedo and transmittance is shown in Figure 11:
the lognormal distribution results in the smallest magnitude of relative bias in cloud albedo, while the
truncated Gaussian distribution seems to produce the best results for transmittance.

7. Further Discussions

As indicated in Figure 3 and Part I, none of the four widely used distribution functions are able to fit the entire
PDF of retrieved cloud LWC and LWP: somework better at the low end of the distribution but worse at the tail,
or vice versa. Since different physical processes respond differently to each portion of the subgrid cloud
distribution, it is not feasible to define a simple measure of “goodness of fit” to judge which distribution
function is a better choice.

For the autoconversion process, parameterized as a highly nonlinear convex function of cloud LWC, the
grid-average rate is mainly determined by the right tail of the subgrid cloud distribution. Therefore, the
distribution functions that underestimate the right tail will have a negative bias and vice versa. This is
confirmed by the results shown in Figures 4, 7, and 8: the lognormal representation on average overestimates
the autoconversion rate since it has a much heavier tail than others; the truncated Gaussian distribution
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Figure 9. The dependence of mean magnitude of relative bias
in grid-average autoconversion rate on averaging window
size using the five representations of subgrid cloud. The data
from the TWP site are used.
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window size. The data from the TWP site are used.
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underestimates the autoconversion rate since it largely underestimates the tail of subgrid cloud LWC
distribution. The Gamma and Weibull representations work best for the autoconversion process because
they better approximate the tail behavior of the retrievals. On the other hand, the accretion process is usually
parameterized as a power function with an exponent of 1.15. The average accretion rate is therefore mainly
determined by the average cloud LWC, and this is why all four representations work well across all examined scales.

In contrast, cloud albedo is a concave function of cloud optical thickness or LWP, though the relationship, in
general, cannot be written as a simple analytical function. The sensitivity of cloud albedo to cloud optical
thickness decreases with increasing optical thickness. In other words, cloud albedo depends relatively more
on the lower end of the subgrid cloud distribution than on the tail. This is why the truncated Gaussian
distribution still works very well despite its poor representation of the tail of the retrieved cloud LWC
distribution. The sensitivity of transmittance to cloud optical thickness also decreases with increasing
optical thickness. Therefore, it is not totally unexpected that the truncated Gaussian and lognormal
distributions are able to produce accurate estimation of grid-average transmittance though they do not
represent the tail as faithful as the Gamma and Weibull distributions.

For the typical grid size of current generation GCMs corresponding to 3 h time window, the mean relative
biases of autoconversion rate with the three heavily tailed representation are all less than 10% with the
Gamma and Weibull distributions having the lowest mean bias. For cloud albedo and transmittance, the
mean relative bias with the lognormal representation is within 2.5%, while the mean biases with the Gamma
and Weibull distributions can exceed 7.5%. It is thus fair to state that the Gamma, lognormal, and Weibull
representations are all sufficiently accurate for autoconversion rate calculations, but only the lognormal
representation is able to produce highly accurate grid-average radiative fluxes for current generation GCMs.
For future generation models with higher resolution, it can be expected that the relative biases from the
lognormal and Gamma representations will fall within 5% in the near future.

8. Summary

We use the 9 year long MICROBASE products from the TWP (tropical), SGP (midlatitude), and NSA (Arctic) sites
of the DOE ARM program to examine subgrid-scale LWC spatial variability and its effects on grid-average
microphysical and radiative transfer process rates. For the autoconversion process, parameterized as a highly
nonlinear function of cloud LWC, ignoring subgrid cloud variability on average results in 50–80% relative bias
and the mean bias is site depended (the tropical site has the largest bias). The calculations of grid-average
accretion rate are close to the reference values with a mean relative bias of less than 2% when subgrid cloud
variability is ignored. For cloud albedo and transmittance, ignoring subgrid variability results in up to 22%
bias at the TWP site and 5–15% bias at the SGP and NSA sites.

We then examine the performance of four commonly used distribution functions representing the subgrid
cloud variability: truncated Gaussian, Gamma, lognormal, and Weibull distributions. The parameters of the
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Figure 11. (a) The dependence of mean magnitude of relative bias in grid-average cloud albedo and (b) transmittance on
averaging window size. The data from the TWP site are used.
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distribution functions are chosen to assure that the resultant distributions have the same mean and standard
deviation as the observed distribution of cloud LWC. The derived distribution functions are used to upscale
the local microphysical and radiative transfer processes to obtain grid-average process rates and radiative
fluxes. The Gamma and Weibull distributions seem to work best for autoconversion process with the mean
relative bias smaller than 5%, while the mean bias with the lognormal distribution is slightly higher. The
truncated Gaussian distribution has the largest mean bias (�29%,�25%, and�14% at the TWP, SGP, and NSA
sites) among the four parameterizations, and this can be explained by its underestimation of the tail of
observed cloud LWC distribution. For cloud albedo and transmittance, the lognormal distribution is able
to keep themean bias to within 2.5%, while the Gamma andWeibull distributions result in much higher mean
bias (up to 7.7% at the TWP site). Overall, the lognormal representation appears to produce acceptable
results, all examined processes (autoconversion, accretion, cloud albedo, and transmittance) for the window
size corresponding to current GCM grids. The contrasting effects on autoconversion rate and cloud albedo
highlight the need to consider the subgrid variability representation and the process together before a universal
function, if any, is found to represent the subgrid variability. The distinct sensitivity of different processes to
different PDF portions also highlights the need for improved quantification of subgrid variability itself.

The dependence of cloud subgrid effects on the averaging window size is also investigated. It is found
that similar to the standard deviation of cloud LWC, the subgrid bias for each process increases quickly with
the averaging window size when the window size is small and becomes more or less flat when the window
size exceeds 12 h. If subgrid cloud variability is ignored, the resultant mean relative bias in grid-average
autoconversion rate is still larger than 40% when the window size is reduced to 30min. This suggests that
subgrid cloud variability has to be taken into account for highly nonlinear processes like autoconversion even
for models with ~10 km grid size. If the appropriate parameterizations of subgrid cloud distribution are
included, the mean relative biases in autoconversion, accretion, cloud albedo, and transmittance can be
reduced to within 10% for the 3 h window size.
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